Рассчитать высоту треугольника со сторонами 54, 46 и 11
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{54 + 46 + 11}{2}} \normalsize = 55.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{55.5(55.5-54)(55.5-46)(55.5-11)}}{46}\normalsize = 8.15654231}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{55.5(55.5-54)(55.5-46)(55.5-11)}}{54}\normalsize = 6.94816567}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{55.5(55.5-54)(55.5-46)(55.5-11)}}{11}\normalsize = 34.1091769}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 54, 46 и 11 равна 8.15654231
Высота треугольника опущенная с вершины A на сторону BC со сторонами 54, 46 и 11 равна 6.94816567
Высота треугольника опущенная с вершины C на сторону AB со сторонами 54, 46 и 11 равна 34.1091769
Ссылка на результат
?n1=54&n2=46&n3=11
Найти высоту треугольника со сторонами 122, 121 и 59
Найти высоту треугольника со сторонами 97, 97 и 61
Найти высоту треугольника со сторонами 117, 95 и 79
Найти высоту треугольника со сторонами 141, 110 и 78
Найти высоту треугольника со сторонами 108, 68 и 65
Найти высоту треугольника со сторонами 114, 70 и 60
Найти высоту треугольника со сторонами 97, 97 и 61
Найти высоту треугольника со сторонами 117, 95 и 79
Найти высоту треугольника со сторонами 141, 110 и 78
Найти высоту треугольника со сторонами 108, 68 и 65
Найти высоту треугольника со сторонами 114, 70 и 60