Рассчитать высоту треугольника со сторонами 54, 47 и 17

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
p=a+b+c2\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
S=p(pa)(pb)(pc)\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
S=12bhb\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
12bhb=p(pa)(pb)(pc)\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
hb=2p(pa)(pb)(pc)b\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
ha=2p(pa)(pb)(pc)a\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
hc=2p(pa)(pb)(pc)c\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
p=54+47+172=59\color{#0000FF}{p = \Large{\frac{54 + 47 + 17}{2}} \normalsize = 59}
hb=259(5954)(5947)(5917)47=16.4081045\color{#0000FF}{h_b = \Large\frac{2\sqrt{59(59-54)(59-47)(59-17)}}{47}\normalsize = 16.4081045}
ha=259(5954)(5947)(5917)54=14.281128\color{#0000FF}{h_a = \Large\frac{2\sqrt{59(59-54)(59-47)(59-17)}}{54}\normalsize = 14.281128}
hc=259(5954)(5947)(5917)17=45.3635831\color{#0000FF}{h_c = \Large\frac{2\sqrt{59(59-54)(59-47)(59-17)}}{17}\normalsize = 45.3635831}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 54, 47 и 17 равна 16.4081045
Высота треугольника опущенная с вершины A на сторону BC со сторонами 54, 47 и 17 равна 14.281128
Высота треугольника опущенная с вершины C на сторону AB со сторонами 54, 47 и 17 равна 45.3635831
Ссылка на результат
?n1=54&n2=47&n3=17