Рассчитать высоту треугольника со сторонами 54, 50 и 24
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{54 + 50 + 24}{2}} \normalsize = 64}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{64(64-54)(64-50)(64-24)}}{50}\normalsize = 23.9466073}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{64(64-54)(64-50)(64-24)}}{54}\normalsize = 22.1727845}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{64(64-54)(64-50)(64-24)}}{24}\normalsize = 49.8887652}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 54, 50 и 24 равна 23.9466073
Высота треугольника опущенная с вершины A на сторону BC со сторонами 54, 50 и 24 равна 22.1727845
Высота треугольника опущенная с вершины C на сторону AB со сторонами 54, 50 и 24 равна 49.8887652
Ссылка на результат
?n1=54&n2=50&n3=24
Найти высоту треугольника со сторонами 111, 105 и 9
Найти высоту треугольника со сторонами 126, 106 и 38
Найти высоту треугольника со сторонами 131, 113 и 100
Найти высоту треугольника со сторонами 127, 101 и 58
Найти высоту треугольника со сторонами 119, 94 и 61
Найти высоту треугольника со сторонами 87, 82 и 6
Найти высоту треугольника со сторонами 126, 106 и 38
Найти высоту треугольника со сторонами 131, 113 и 100
Найти высоту треугольника со сторонами 127, 101 и 58
Найти высоту треугольника со сторонами 119, 94 и 61
Найти высоту треугольника со сторонами 87, 82 и 6