Рассчитать высоту треугольника со сторонами 55, 49 и 19
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{55 + 49 + 19}{2}} \normalsize = 61.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{61.5(61.5-55)(61.5-49)(61.5-19)}}{49}\normalsize = 18.8095161}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{61.5(61.5-55)(61.5-49)(61.5-19)}}{55}\normalsize = 16.7575689}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{61.5(61.5-55)(61.5-49)(61.5-19)}}{19}\normalsize = 48.5087521}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 55, 49 и 19 равна 18.8095161
Высота треугольника опущенная с вершины A на сторону BC со сторонами 55, 49 и 19 равна 16.7575689
Высота треугольника опущенная с вершины C на сторону AB со сторонами 55, 49 и 19 равна 48.5087521
Ссылка на результат
?n1=55&n2=49&n3=19
Найти высоту треугольника со сторонами 59, 56 и 20
Найти высоту треугольника со сторонами 132, 119 и 58
Найти высоту треугольника со сторонами 116, 76 и 67
Найти высоту треугольника со сторонами 128, 122 и 106
Найти высоту треугольника со сторонами 61, 33 и 30
Найти высоту треугольника со сторонами 147, 116 и 108
Найти высоту треугольника со сторонами 132, 119 и 58
Найти высоту треугольника со сторонами 116, 76 и 67
Найти высоту треугольника со сторонами 128, 122 и 106
Найти высоту треугольника со сторонами 61, 33 и 30
Найти высоту треугольника со сторонами 147, 116 и 108