Рассчитать высоту треугольника со сторонами 56, 53 и 13
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{56 + 53 + 13}{2}} \normalsize = 61}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{61(61-56)(61-53)(61-13)}}{53}\normalsize = 12.9142639}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{61(61-56)(61-53)(61-13)}}{56}\normalsize = 12.2224284}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{61(61-56)(61-53)(61-13)}}{13}\normalsize = 52.6504606}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 56, 53 и 13 равна 12.9142639
Высота треугольника опущенная с вершины A на сторону BC со сторонами 56, 53 и 13 равна 12.2224284
Высота треугольника опущенная с вершины C на сторону AB со сторонами 56, 53 и 13 равна 52.6504606
Ссылка на результат
?n1=56&n2=53&n3=13
Найти высоту треугольника со сторонами 76, 66 и 35
Найти высоту треугольника со сторонами 77, 61 и 35
Найти высоту треугольника со сторонами 57, 51 и 33
Найти высоту треугольника со сторонами 126, 112 и 20
Найти высоту треугольника со сторонами 130, 118 и 57
Найти высоту треугольника со сторонами 144, 82 и 71
Найти высоту треугольника со сторонами 77, 61 и 35
Найти высоту треугольника со сторонами 57, 51 и 33
Найти высоту треугольника со сторонами 126, 112 и 20
Найти высоту треугольника со сторонами 130, 118 и 57
Найти высоту треугольника со сторонами 144, 82 и 71