Рассчитать высоту треугольника со сторонами 57, 55 и 22
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{57 + 55 + 22}{2}} \normalsize = 67}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{67(67-57)(67-55)(67-22)}}{55}\normalsize = 21.8726593}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{67(67-57)(67-55)(67-22)}}{57}\normalsize = 21.1051975}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{67(67-57)(67-55)(67-22)}}{22}\normalsize = 54.6816482}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 57, 55 и 22 равна 21.8726593
Высота треугольника опущенная с вершины A на сторону BC со сторонами 57, 55 и 22 равна 21.1051975
Высота треугольника опущенная с вершины C на сторону AB со сторонами 57, 55 и 22 равна 54.6816482
Ссылка на результат
?n1=57&n2=55&n3=22
Найти высоту треугольника со сторонами 86, 79 и 62
Найти высоту треугольника со сторонами 55, 48 и 25
Найти высоту треугольника со сторонами 96, 54 и 53
Найти высоту треугольника со сторонами 138, 95 и 76
Найти высоту треугольника со сторонами 82, 67 и 38
Найти высоту треугольника со сторонами 97, 96 и 94
Найти высоту треугольника со сторонами 55, 48 и 25
Найти высоту треугольника со сторонами 96, 54 и 53
Найти высоту треугольника со сторонами 138, 95 и 76
Найти высоту треугольника со сторонами 82, 67 и 38
Найти высоту треугольника со сторонами 97, 96 и 94