Рассчитать высоту треугольника со сторонами 57, 55 и 30
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{57 + 55 + 30}{2}} \normalsize = 71}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{71(71-57)(71-55)(71-30)}}{55}\normalsize = 29.3638109}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{71(71-57)(71-55)(71-30)}}{57}\normalsize = 28.3335017}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{71(71-57)(71-55)(71-30)}}{30}\normalsize = 53.8336532}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 57, 55 и 30 равна 29.3638109
Высота треугольника опущенная с вершины A на сторону BC со сторонами 57, 55 и 30 равна 28.3335017
Высота треугольника опущенная с вершины C на сторону AB со сторонами 57, 55 и 30 равна 53.8336532
Ссылка на результат
?n1=57&n2=55&n3=30
Найти высоту треугольника со сторонами 99, 91 и 83
Найти высоту треугольника со сторонами 140, 130 и 48
Найти высоту треугольника со сторонами 126, 110 и 71
Найти высоту треугольника со сторонами 138, 97 и 46
Найти высоту треугольника со сторонами 83, 50 и 49
Найти высоту треугольника со сторонами 137, 124 и 50
Найти высоту треугольника со сторонами 140, 130 и 48
Найти высоту треугольника со сторонами 126, 110 и 71
Найти высоту треугольника со сторонами 138, 97 и 46
Найти высоту треугольника со сторонами 83, 50 и 49
Найти высоту треугольника со сторонами 137, 124 и 50