Рассчитать высоту треугольника со сторонами 59, 32 и 31
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{59 + 32 + 31}{2}} \normalsize = 61}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{61(61-59)(61-32)(61-31)}}{32}\normalsize = 20.361959}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{61(61-59)(61-32)(61-31)}}{59}\normalsize = 11.0437744}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{61(61-59)(61-32)(61-31)}}{31}\normalsize = 21.0187964}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 59, 32 и 31 равна 20.361959
Высота треугольника опущенная с вершины A на сторону BC со сторонами 59, 32 и 31 равна 11.0437744
Высота треугольника опущенная с вершины C на сторону AB со сторонами 59, 32 и 31 равна 21.0187964
Ссылка на результат
?n1=59&n2=32&n3=31
Найти высоту треугольника со сторонами 125, 98 и 62
Найти высоту треугольника со сторонами 105, 99 и 61
Найти высоту треугольника со сторонами 102, 92 и 57
Найти высоту треугольника со сторонами 129, 126 и 97
Найти высоту треугольника со сторонами 98, 81 и 51
Найти высоту треугольника со сторонами 91, 85 и 29
Найти высоту треугольника со сторонами 105, 99 и 61
Найти высоту треугольника со сторонами 102, 92 и 57
Найти высоту треугольника со сторонами 129, 126 и 97
Найти высоту треугольника со сторонами 98, 81 и 51
Найти высоту треугольника со сторонами 91, 85 и 29