Рассчитать высоту треугольника со сторонами 59, 57 и 15
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{59 + 57 + 15}{2}} \normalsize = 65.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{65.5(65.5-59)(65.5-57)(65.5-15)}}{57}\normalsize = 14.9998743}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{65.5(65.5-59)(65.5-57)(65.5-15)}}{59}\normalsize = 14.491404}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{65.5(65.5-59)(65.5-57)(65.5-15)}}{15}\normalsize = 56.9995224}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 59, 57 и 15 равна 14.9998743
Высота треугольника опущенная с вершины A на сторону BC со сторонами 59, 57 и 15 равна 14.491404
Высота треугольника опущенная с вершины C на сторону AB со сторонами 59, 57 и 15 равна 56.9995224
Ссылка на результат
?n1=59&n2=57&n3=15
Найти высоту треугольника со сторонами 73, 46 и 40
Найти высоту треугольника со сторонами 127, 103 и 73
Найти высоту треугольника со сторонами 98, 81 и 81
Найти высоту треугольника со сторонами 134, 98 и 62
Найти высоту треугольника со сторонами 122, 83 и 79
Найти высоту треугольника со сторонами 147, 88 и 67
Найти высоту треугольника со сторонами 127, 103 и 73
Найти высоту треугольника со сторонами 98, 81 и 81
Найти высоту треугольника со сторонами 134, 98 и 62
Найти высоту треугольника со сторонами 122, 83 и 79
Найти высоту треугольника со сторонами 147, 88 и 67