Рассчитать высоту треугольника со сторонами 60, 40 и 26
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{60 + 40 + 26}{2}} \normalsize = 63}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{63(63-60)(63-40)(63-26)}}{40}\normalsize = 20.0523689}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{63(63-60)(63-40)(63-26)}}{60}\normalsize = 13.368246}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{63(63-60)(63-40)(63-26)}}{26}\normalsize = 30.8497984}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 60, 40 и 26 равна 20.0523689
Высота треугольника опущенная с вершины A на сторону BC со сторонами 60, 40 и 26 равна 13.368246
Высота треугольника опущенная с вершины C на сторону AB со сторонами 60, 40 и 26 равна 30.8497984
Ссылка на результат
?n1=60&n2=40&n3=26
Найти высоту треугольника со сторонами 106, 65 и 42
Найти высоту треугольника со сторонами 72, 42 и 36
Найти высоту треугольника со сторонами 139, 103 и 43
Найти высоту треугольника со сторонами 138, 89 и 71
Найти высоту треугольника со сторонами 117, 76 и 47
Найти высоту треугольника со сторонами 102, 79 и 61
Найти высоту треугольника со сторонами 72, 42 и 36
Найти высоту треугольника со сторонами 139, 103 и 43
Найти высоту треугольника со сторонами 138, 89 и 71
Найти высоту треугольника со сторонами 117, 76 и 47
Найти высоту треугольника со сторонами 102, 79 и 61