Рассчитать высоту треугольника со сторонами 60, 44 и 29
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{60 + 44 + 29}{2}} \normalsize = 66.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{66.5(66.5-60)(66.5-44)(66.5-29)}}{44}\normalsize = 27.4505919}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{66.5(66.5-60)(66.5-44)(66.5-29)}}{60}\normalsize = 20.130434}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{66.5(66.5-60)(66.5-44)(66.5-29)}}{29}\normalsize = 41.6491739}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 60, 44 и 29 равна 27.4505919
Высота треугольника опущенная с вершины A на сторону BC со сторонами 60, 44 и 29 равна 20.130434
Высота треугольника опущенная с вершины C на сторону AB со сторонами 60, 44 и 29 равна 41.6491739
Ссылка на результат
?n1=60&n2=44&n3=29
Найти высоту треугольника со сторонами 120, 118 и 115
Найти высоту треугольника со сторонами 100, 78 и 74
Найти высоту треугольника со сторонами 47, 37 и 36
Найти высоту треугольника со сторонами 92, 88 и 11
Найти высоту треугольника со сторонами 100, 79 и 44
Найти высоту треугольника со сторонами 121, 96 и 32
Найти высоту треугольника со сторонами 100, 78 и 74
Найти высоту треугольника со сторонами 47, 37 и 36
Найти высоту треугольника со сторонами 92, 88 и 11
Найти высоту треугольника со сторонами 100, 79 и 44
Найти высоту треугольника со сторонами 121, 96 и 32