Рассчитать высоту треугольника со сторонами 60, 53 и 17
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{60 + 53 + 17}{2}} \normalsize = 65}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{65(65-60)(65-53)(65-17)}}{53}\normalsize = 16.3270246}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{65(65-60)(65-53)(65-17)}}{60}\normalsize = 14.4222051}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{65(65-60)(65-53)(65-17)}}{17}\normalsize = 50.9019004}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 60, 53 и 17 равна 16.3270246
Высота треугольника опущенная с вершины A на сторону BC со сторонами 60, 53 и 17 равна 14.4222051
Высота треугольника опущенная с вершины C на сторону AB со сторонами 60, 53 и 17 равна 50.9019004
Ссылка на результат
?n1=60&n2=53&n3=17
Найти высоту треугольника со сторонами 107, 105 и 95
Найти высоту треугольника со сторонами 149, 117 и 66
Найти высоту треугольника со сторонами 147, 117 и 34
Найти высоту треугольника со сторонами 118, 100 и 95
Найти высоту треугольника со сторонами 98, 85 и 44
Найти высоту треугольника со сторонами 73, 70 и 34
Найти высоту треугольника со сторонами 149, 117 и 66
Найти высоту треугольника со сторонами 147, 117 и 34
Найти высоту треугольника со сторонами 118, 100 и 95
Найти высоту треугольника со сторонами 98, 85 и 44
Найти высоту треугольника со сторонами 73, 70 и 34