Рассчитать высоту треугольника со сторонами 60, 55 и 19

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{60 + 55 + 19}{2}} \normalsize = 67}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{67(67-60)(67-55)(67-19)}}{55}\normalsize = 18.9001377}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{67(67-60)(67-55)(67-19)}}{60}\normalsize = 17.3251263}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{67(67-60)(67-55)(67-19)}}{19}\normalsize = 54.710925}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 60, 55 и 19 равна 18.9001377
Высота треугольника опущенная с вершины A на сторону BC со сторонами 60, 55 и 19 равна 17.3251263
Высота треугольника опущенная с вершины C на сторону AB со сторонами 60, 55 и 19 равна 54.710925
Ссылка на результат
?n1=60&n2=55&n3=19