Рассчитать высоту треугольника со сторонами 79, 73 и 60
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{79 + 73 + 60}{2}} \normalsize = 106}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{106(106-79)(106-73)(106-60)}}{73}\normalsize = 57.1054865}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{106(106-79)(106-73)(106-60)}}{79}\normalsize = 52.768361}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{106(106-79)(106-73)(106-60)}}{60}\normalsize = 69.4783419}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 79, 73 и 60 равна 57.1054865
Высота треугольника опущенная с вершины A на сторону BC со сторонами 79, 73 и 60 равна 52.768361
Высота треугольника опущенная с вершины C на сторону AB со сторонами 79, 73 и 60 равна 69.4783419
Ссылка на результат
?n1=79&n2=73&n3=60
Найти высоту треугольника со сторонами 90, 64 и 48
Найти высоту треугольника со сторонами 106, 102 и 73
Найти высоту треугольника со сторонами 63, 57 и 44
Найти высоту треугольника со сторонами 116, 85 и 36
Найти высоту треугольника со сторонами 50, 47 и 38
Найти высоту треугольника со сторонами 144, 135 и 85
Найти высоту треугольника со сторонами 106, 102 и 73
Найти высоту треугольника со сторонами 63, 57 и 44
Найти высоту треугольника со сторонами 116, 85 и 36
Найти высоту треугольника со сторонами 50, 47 и 38
Найти высоту треугольника со сторонами 144, 135 и 85