Рассчитать высоту треугольника со сторонами 61, 40 и 30
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{61 + 40 + 30}{2}} \normalsize = 65.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{65.5(65.5-61)(65.5-40)(65.5-30)}}{40}\normalsize = 25.8274291}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{65.5(65.5-61)(65.5-40)(65.5-30)}}{61}\normalsize = 16.9360191}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{65.5(65.5-61)(65.5-40)(65.5-30)}}{30}\normalsize = 34.4365721}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 61, 40 и 30 равна 25.8274291
Высота треугольника опущенная с вершины A на сторону BC со сторонами 61, 40 и 30 равна 16.9360191
Высота треугольника опущенная с вершины C на сторону AB со сторонами 61, 40 и 30 равна 34.4365721
Ссылка на результат
?n1=61&n2=40&n3=30
Найти высоту треугольника со сторонами 98, 88 и 24
Найти высоту треугольника со сторонами 70, 63 и 39
Найти высоту треугольника со сторонами 81, 56 и 35
Найти высоту треугольника со сторонами 95, 59 и 43
Найти высоту треугольника со сторонами 144, 134 и 50
Найти высоту треугольника со сторонами 86, 78 и 58
Найти высоту треугольника со сторонами 70, 63 и 39
Найти высоту треугольника со сторонами 81, 56 и 35
Найти высоту треугольника со сторонами 95, 59 и 43
Найти высоту треугольника со сторонами 144, 134 и 50
Найти высоту треугольника со сторонами 86, 78 и 58