Рассчитать высоту треугольника со сторонами 61, 47 и 34
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{61 + 47 + 34}{2}} \normalsize = 71}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{71(71-61)(71-47)(71-34)}}{47}\normalsize = 33.7884131}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{71(71-61)(71-47)(71-34)}}{61}\normalsize = 26.0336953}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{71(71-61)(71-47)(71-34)}}{34}\normalsize = 46.7075122}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 61, 47 и 34 равна 33.7884131
Высота треугольника опущенная с вершины A на сторону BC со сторонами 61, 47 и 34 равна 26.0336953
Высота треугольника опущенная с вершины C на сторону AB со сторонами 61, 47 и 34 равна 46.7075122
Ссылка на результат
?n1=61&n2=47&n3=34
Найти высоту треугольника со сторонами 130, 115 и 60
Найти высоту треугольника со сторонами 97, 75 и 41
Найти высоту треугольника со сторонами 116, 109 и 15
Найти высоту треугольника со сторонами 148, 132 и 35
Найти высоту треугольника со сторонами 103, 97 и 82
Найти высоту треугольника со сторонами 134, 134 и 50
Найти высоту треугольника со сторонами 97, 75 и 41
Найти высоту треугольника со сторонами 116, 109 и 15
Найти высоту треугольника со сторонами 148, 132 и 35
Найти высоту треугольника со сторонами 103, 97 и 82
Найти высоту треугольника со сторонами 134, 134 и 50