Рассчитать высоту треугольника со сторонами 61, 60 и 37
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{61 + 60 + 37}{2}} \normalsize = 79}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{79(79-61)(79-60)(79-37)}}{60}\normalsize = 35.5083089}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{79(79-61)(79-60)(79-37)}}{61}\normalsize = 34.9262055}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{79(79-61)(79-60)(79-37)}}{37}\normalsize = 57.5810414}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 61, 60 и 37 равна 35.5083089
Высота треугольника опущенная с вершины A на сторону BC со сторонами 61, 60 и 37 равна 34.9262055
Высота треугольника опущенная с вершины C на сторону AB со сторонами 61, 60 и 37 равна 57.5810414
Ссылка на результат
?n1=61&n2=60&n3=37
Найти высоту треугольника со сторонами 76, 56 и 56
Найти высоту треугольника со сторонами 75, 69 и 24
Найти высоту треугольника со сторонами 137, 91 и 65
Найти высоту треугольника со сторонами 111, 106 и 38
Найти высоту треугольника со сторонами 67, 61 и 15
Найти высоту треугольника со сторонами 118, 78 и 56
Найти высоту треугольника со сторонами 75, 69 и 24
Найти высоту треугольника со сторонами 137, 91 и 65
Найти высоту треугольника со сторонами 111, 106 и 38
Найти высоту треугольника со сторонами 67, 61 и 15
Найти высоту треугольника со сторонами 118, 78 и 56