Рассчитать высоту треугольника со сторонами 61, 60 и 56
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{61 + 60 + 56}{2}} \normalsize = 88.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{88.5(88.5-61)(88.5-60)(88.5-56)}}{60}\normalsize = 50.0473214}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{88.5(88.5-61)(88.5-60)(88.5-56)}}{61}\normalsize = 49.2268735}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{88.5(88.5-61)(88.5-60)(88.5-56)}}{56}\normalsize = 53.62213}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 61, 60 и 56 равна 50.0473214
Высота треугольника опущенная с вершины A на сторону BC со сторонами 61, 60 и 56 равна 49.2268735
Высота треугольника опущенная с вершины C на сторону AB со сторонами 61, 60 и 56 равна 53.62213
Ссылка на результат
?n1=61&n2=60&n3=56
Найти высоту треугольника со сторонами 149, 140 и 114
Найти высоту треугольника со сторонами 134, 104 и 99
Найти высоту треугольника со сторонами 145, 140 и 70
Найти высоту треугольника со сторонами 128, 92 и 76
Найти высоту треугольника со сторонами 111, 101 и 67
Найти высоту треугольника со сторонами 123, 106 и 88
Найти высоту треугольника со сторонами 134, 104 и 99
Найти высоту треугольника со сторонами 145, 140 и 70
Найти высоту треугольника со сторонами 128, 92 и 76
Найти высоту треугольника со сторонами 111, 101 и 67
Найти высоту треугольника со сторонами 123, 106 и 88