Рассчитать высоту треугольника со сторонами 66, 62 и 52
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{66 + 62 + 52}{2}} \normalsize = 90}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{90(90-66)(90-62)(90-52)}}{62}\normalsize = 48.9030556}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{90(90-66)(90-62)(90-52)}}{66}\normalsize = 45.939234}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{90(90-66)(90-62)(90-52)}}{52}\normalsize = 58.3074893}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 66, 62 и 52 равна 48.9030556
Высота треугольника опущенная с вершины A на сторону BC со сторонами 66, 62 и 52 равна 45.939234
Высота треугольника опущенная с вершины C на сторону AB со сторонами 66, 62 и 52 равна 58.3074893
Ссылка на результат
?n1=66&n2=62&n3=52
Найти высоту треугольника со сторонами 111, 96 и 22
Найти высоту треугольника со сторонами 127, 111 и 24
Найти высоту треугольника со сторонами 129, 83 и 52
Найти высоту треугольника со сторонами 77, 69 и 41
Найти высоту треугольника со сторонами 110, 65 и 62
Найти высоту треугольника со сторонами 65, 46 и 32
Найти высоту треугольника со сторонами 127, 111 и 24
Найти высоту треугольника со сторонами 129, 83 и 52
Найти высоту треугольника со сторонами 77, 69 и 41
Найти высоту треугольника со сторонами 110, 65 и 62
Найти высоту треугольника со сторонами 65, 46 и 32