Рассчитать высоту треугольника со сторонами 61, 60 и 8
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{61 + 60 + 8}{2}} \normalsize = 64.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{64.5(64.5-61)(64.5-60)(64.5-8)}}{60}\normalsize = 7.98588599}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{64.5(64.5-61)(64.5-60)(64.5-8)}}{61}\normalsize = 7.85496982}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{64.5(64.5-61)(64.5-60)(64.5-8)}}{8}\normalsize = 59.8941449}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 61, 60 и 8 равна 7.98588599
Высота треугольника опущенная с вершины A на сторону BC со сторонами 61, 60 и 8 равна 7.85496982
Высота треугольника опущенная с вершины C на сторону AB со сторонами 61, 60 и 8 равна 59.8941449
Ссылка на результат
?n1=61&n2=60&n3=8
Найти высоту треугольника со сторонами 143, 108 и 87
Найти высоту треугольника со сторонами 136, 117 и 115
Найти высоту треугольника со сторонами 129, 112 и 111
Найти высоту треугольника со сторонами 119, 113 и 71
Найти высоту треугольника со сторонами 145, 127 и 97
Найти высоту треугольника со сторонами 109, 104 и 100
Найти высоту треугольника со сторонами 136, 117 и 115
Найти высоту треугольника со сторонами 129, 112 и 111
Найти высоту треугольника со сторонами 119, 113 и 71
Найти высоту треугольника со сторонами 145, 127 и 97
Найти высоту треугольника со сторонами 109, 104 и 100