Рассчитать высоту треугольника со сторонами 63, 41 и 38
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{63 + 41 + 38}{2}} \normalsize = 71}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{71(71-63)(71-41)(71-38)}}{41}\normalsize = 36.5795117}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{71(71-63)(71-41)(71-38)}}{63}\normalsize = 23.805714}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{71(71-63)(71-41)(71-38)}}{38}\normalsize = 39.4673679}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 63, 41 и 38 равна 36.5795117
Высота треугольника опущенная с вершины A на сторону BC со сторонами 63, 41 и 38 равна 23.805714
Высота треугольника опущенная с вершины C на сторону AB со сторонами 63, 41 и 38 равна 39.4673679
Ссылка на результат
?n1=63&n2=41&n3=38
Найти высоту треугольника со сторонами 113, 109 и 74
Найти высоту треугольника со сторонами 146, 107 и 100
Найти высоту треугольника со сторонами 117, 115 и 12
Найти высоту треугольника со сторонами 139, 131 и 15
Найти высоту треугольника со сторонами 131, 95 и 38
Найти высоту треугольника со сторонами 71, 43 и 34
Найти высоту треугольника со сторонами 146, 107 и 100
Найти высоту треугольника со сторонами 117, 115 и 12
Найти высоту треугольника со сторонами 139, 131 и 15
Найти высоту треугольника со сторонами 131, 95 и 38
Найти высоту треугольника со сторонами 71, 43 и 34