Рассчитать высоту треугольника со сторонами 63, 43 и 33
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{63 + 43 + 33}{2}} \normalsize = 69.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{69.5(69.5-63)(69.5-43)(69.5-33)}}{43}\normalsize = 30.7453888}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{69.5(69.5-63)(69.5-43)(69.5-33)}}{63}\normalsize = 20.9849479}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{69.5(69.5-63)(69.5-43)(69.5-33)}}{33}\normalsize = 40.0621733}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 63, 43 и 33 равна 30.7453888
Высота треугольника опущенная с вершины A на сторону BC со сторонами 63, 43 и 33 равна 20.9849479
Высота треугольника опущенная с вершины C на сторону AB со сторонами 63, 43 и 33 равна 40.0621733
Ссылка на результат
?n1=63&n2=43&n3=33
Найти высоту треугольника со сторонами 95, 56 и 51
Найти высоту треугольника со сторонами 114, 72 и 67
Найти высоту треугольника со сторонами 104, 66 и 46
Найти высоту треугольника со сторонами 34, 25 и 10
Найти высоту треугольника со сторонами 137, 123 и 49
Найти высоту треугольника со сторонами 138, 131 и 98
Найти высоту треугольника со сторонами 114, 72 и 67
Найти высоту треугольника со сторонами 104, 66 и 46
Найти высоту треугольника со сторонами 34, 25 и 10
Найти высоту треугольника со сторонами 137, 123 и 49
Найти высоту треугольника со сторонами 138, 131 и 98