Рассчитать высоту треугольника со сторонами 66, 56 и 43
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{66 + 56 + 43}{2}} \normalsize = 82.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{82.5(82.5-66)(82.5-56)(82.5-43)}}{56}\normalsize = 42.6316753}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{82.5(82.5-66)(82.5-56)(82.5-43)}}{66}\normalsize = 36.1723306}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{82.5(82.5-66)(82.5-56)(82.5-43)}}{43}\normalsize = 55.5203214}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 66, 56 и 43 равна 42.6316753
Высота треугольника опущенная с вершины A на сторону BC со сторонами 66, 56 и 43 равна 36.1723306
Высота треугольника опущенная с вершины C на сторону AB со сторонами 66, 56 и 43 равна 55.5203214
Ссылка на результат
?n1=66&n2=56&n3=43
Найти высоту треугольника со сторонами 115, 96 и 33
Найти высоту треугольника со сторонами 115, 93 и 63
Найти высоту треугольника со сторонами 149, 149 и 141
Найти высоту треугольника со сторонами 62, 46 и 19
Найти высоту треугольника со сторонами 137, 119 и 115
Найти высоту треугольника со сторонами 89, 85 и 21
Найти высоту треугольника со сторонами 115, 93 и 63
Найти высоту треугольника со сторонами 149, 149 и 141
Найти высоту треугольника со сторонами 62, 46 и 19
Найти высоту треугольника со сторонами 137, 119 и 115
Найти высоту треугольника со сторонами 89, 85 и 21