Рассчитать высоту треугольника со сторонами 67, 57 и 24
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{67 + 57 + 24}{2}} \normalsize = 74}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{74(74-67)(74-57)(74-24)}}{57}\normalsize = 23.2824931}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{74(74-67)(74-57)(74-24)}}{67}\normalsize = 19.8074941}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{74(74-67)(74-57)(74-24)}}{24}\normalsize = 55.2959211}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 67, 57 и 24 равна 23.2824931
Высота треугольника опущенная с вершины A на сторону BC со сторонами 67, 57 и 24 равна 19.8074941
Высота треугольника опущенная с вершины C на сторону AB со сторонами 67, 57 и 24 равна 55.2959211
Ссылка на результат
?n1=67&n2=57&n3=24
Найти высоту треугольника со сторонами 38, 29 и 20
Найти высоту треугольника со сторонами 68, 49 и 25
Найти высоту треугольника со сторонами 107, 82 и 55
Найти высоту треугольника со сторонами 99, 54 и 48
Найти высоту треугольника со сторонами 97, 90 и 49
Найти высоту треугольника со сторонами 145, 113 и 75
Найти высоту треугольника со сторонами 68, 49 и 25
Найти высоту треугольника со сторонами 107, 82 и 55
Найти высоту треугольника со сторонами 99, 54 и 48
Найти высоту треугольника со сторонами 97, 90 и 49
Найти высоту треугольника со сторонами 145, 113 и 75