Рассчитать высоту треугольника со сторонами 67, 60 и 55
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{67 + 60 + 55}{2}} \normalsize = 91}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{91(91-67)(91-60)(91-55)}}{60}\normalsize = 52.0399846}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{91(91-67)(91-60)(91-55)}}{67}\normalsize = 46.6029713}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{91(91-67)(91-60)(91-55)}}{55}\normalsize = 56.7708923}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 67, 60 и 55 равна 52.0399846
Высота треугольника опущенная с вершины A на сторону BC со сторонами 67, 60 и 55 равна 46.6029713
Высота треугольника опущенная с вершины C на сторону AB со сторонами 67, 60 и 55 равна 56.7708923
Ссылка на результат
?n1=67&n2=60&n3=55
Найти высоту треугольника со сторонами 82, 77 и 72
Найти высоту треугольника со сторонами 127, 124 и 15
Найти высоту треугольника со сторонами 143, 102 и 99
Найти высоту треугольника со сторонами 123, 111 и 66
Найти высоту треугольника со сторонами 122, 83 и 65
Найти высоту треугольника со сторонами 130, 125 и 92
Найти высоту треугольника со сторонами 127, 124 и 15
Найти высоту треугольника со сторонами 143, 102 и 99
Найти высоту треугольника со сторонами 123, 111 и 66
Найти высоту треугольника со сторонами 122, 83 и 65
Найти высоту треугольника со сторонами 130, 125 и 92