Рассчитать высоту треугольника со сторонами 67, 60 и 59
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{67 + 60 + 59}{2}} \normalsize = 93}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{93(93-67)(93-60)(93-59)}}{60}\normalsize = 54.9039161}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{93(93-67)(93-60)(93-59)}}{67}\normalsize = 49.167686}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{93(93-67)(93-60)(93-59)}}{59}\normalsize = 55.8344909}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 67, 60 и 59 равна 54.9039161
Высота треугольника опущенная с вершины A на сторону BC со сторонами 67, 60 и 59 равна 49.167686
Высота треугольника опущенная с вершины C на сторону AB со сторонами 67, 60 и 59 равна 55.8344909
Ссылка на результат
?n1=67&n2=60&n3=59
Найти высоту треугольника со сторонами 142, 105 и 73
Найти высоту треугольника со сторонами 109, 67 и 49
Найти высоту треугольника со сторонами 81, 44 и 40
Найти высоту треугольника со сторонами 124, 120 и 79
Найти высоту треугольника со сторонами 88, 80 и 80
Найти высоту треугольника со сторонами 148, 101 и 72
Найти высоту треугольника со сторонами 109, 67 и 49
Найти высоту треугольника со сторонами 81, 44 и 40
Найти высоту треугольника со сторонами 124, 120 и 79
Найти высоту треугольника со сторонами 88, 80 и 80
Найти высоту треугольника со сторонами 148, 101 и 72