Рассчитать высоту треугольника со сторонами 67, 62 и 9
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{67 + 62 + 9}{2}} \normalsize = 69}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{69(69-67)(69-62)(69-9)}}{62}\normalsize = 7.76609135}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{69(69-67)(69-62)(69-9)}}{67}\normalsize = 7.18653229}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{69(69-67)(69-62)(69-9)}}{9}\normalsize = 53.4997404}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 67, 62 и 9 равна 7.76609135
Высота треугольника опущенная с вершины A на сторону BC со сторонами 67, 62 и 9 равна 7.18653229
Высота треугольника опущенная с вершины C на сторону AB со сторонами 67, 62 и 9 равна 53.4997404
Ссылка на результат
?n1=67&n2=62&n3=9
Найти высоту треугольника со сторонами 40, 36 и 33
Найти высоту треугольника со сторонами 92, 75 и 49
Найти высоту треугольника со сторонами 67, 47 и 27
Найти высоту треугольника со сторонами 118, 108 и 87
Найти высоту треугольника со сторонами 82, 69 и 15
Найти высоту треугольника со сторонами 146, 118 и 42
Найти высоту треугольника со сторонами 92, 75 и 49
Найти высоту треугольника со сторонами 67, 47 и 27
Найти высоту треугольника со сторонами 118, 108 и 87
Найти высоту треугольника со сторонами 82, 69 и 15
Найти высоту треугольника со сторонами 146, 118 и 42