Рассчитать высоту треугольника со сторонами 67, 66 и 40
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{67 + 66 + 40}{2}} \normalsize = 86.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{86.5(86.5-67)(86.5-66)(86.5-40)}}{66}\normalsize = 38.4250841}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{86.5(86.5-67)(86.5-66)(86.5-40)}}{67}\normalsize = 37.8515754}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{86.5(86.5-67)(86.5-66)(86.5-40)}}{40}\normalsize = 63.4013887}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 67, 66 и 40 равна 38.4250841
Высота треугольника опущенная с вершины A на сторону BC со сторонами 67, 66 и 40 равна 37.8515754
Высота треугольника опущенная с вершины C на сторону AB со сторонами 67, 66 и 40 равна 63.4013887
Ссылка на результат
?n1=67&n2=66&n3=40
Найти высоту треугольника со сторонами 134, 104 и 39
Найти высоту треугольника со сторонами 48, 30 и 19
Найти высоту треугольника со сторонами 66, 51 и 42
Найти высоту треугольника со сторонами 72, 67 и 44
Найти высоту треугольника со сторонами 101, 96 и 29
Найти высоту треугольника со сторонами 143, 104 и 100
Найти высоту треугольника со сторонами 48, 30 и 19
Найти высоту треугольника со сторонами 66, 51 и 42
Найти высоту треугольника со сторонами 72, 67 и 44
Найти высоту треугольника со сторонами 101, 96 и 29
Найти высоту треугольника со сторонами 143, 104 и 100