Рассчитать высоту треугольника со сторонами 68, 62 и 47
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{68 + 62 + 47}{2}} \normalsize = 88.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{88.5(88.5-68)(88.5-62)(88.5-47)}}{62}\normalsize = 45.5652605}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{88.5(88.5-68)(88.5-62)(88.5-47)}}{68}\normalsize = 41.5447963}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{88.5(88.5-68)(88.5-62)(88.5-47)}}{47}\normalsize = 60.1073649}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 68, 62 и 47 равна 45.5652605
Высота треугольника опущенная с вершины A на сторону BC со сторонами 68, 62 и 47 равна 41.5447963
Высота треугольника опущенная с вершины C на сторону AB со сторонами 68, 62 и 47 равна 60.1073649
Ссылка на результат
?n1=68&n2=62&n3=47
Найти высоту треугольника со сторонами 82, 70 и 51
Найти высоту треугольника со сторонами 149, 130 и 130
Найти высоту треугольника со сторонами 106, 98 и 20
Найти высоту треугольника со сторонами 103, 71 и 66
Найти высоту треугольника со сторонами 115, 100 и 91
Найти высоту треугольника со сторонами 123, 119 и 95
Найти высоту треугольника со сторонами 149, 130 и 130
Найти высоту треугольника со сторонами 106, 98 и 20
Найти высоту треугольника со сторонами 103, 71 и 66
Найти высоту треугольника со сторонами 115, 100 и 91
Найти высоту треугольника со сторонами 123, 119 и 95