Рассчитать высоту треугольника со сторонами 68, 66 и 47
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{68 + 66 + 47}{2}} \normalsize = 90.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{90.5(90.5-68)(90.5-66)(90.5-47)}}{66}\normalsize = 44.6405236}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{90.5(90.5-68)(90.5-66)(90.5-47)}}{68}\normalsize = 43.327567}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{90.5(90.5-68)(90.5-66)(90.5-47)}}{47}\normalsize = 62.6866926}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 68, 66 и 47 равна 44.6405236
Высота треугольника опущенная с вершины A на сторону BC со сторонами 68, 66 и 47 равна 43.327567
Высота треугольника опущенная с вершины C на сторону AB со сторонами 68, 66 и 47 равна 62.6866926
Ссылка на результат
?n1=68&n2=66&n3=47
Найти высоту треугольника со сторонами 136, 134 и 6
Найти высоту треугольника со сторонами 148, 117 и 116
Найти высоту треугольника со сторонами 129, 101 и 101
Найти высоту треугольника со сторонами 55, 55 и 4
Найти высоту треугольника со сторонами 21, 18 и 5
Найти высоту треугольника со сторонами 123, 106 и 98
Найти высоту треугольника со сторонами 148, 117 и 116
Найти высоту треугольника со сторонами 129, 101 и 101
Найти высоту треугольника со сторонами 55, 55 и 4
Найти высоту треугольника со сторонами 21, 18 и 5
Найти высоту треугольника со сторонами 123, 106 и 98