Рассчитать высоту треугольника со сторонами 68, 67 и 63
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{68 + 67 + 63}{2}} \normalsize = 99}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{99(99-68)(99-67)(99-63)}}{67}\normalsize = 56.12804}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{99(99-68)(99-67)(99-63)}}{68}\normalsize = 55.3026276}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{99(99-68)(99-67)(99-63)}}{63}\normalsize = 59.6917251}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 68, 67 и 63 равна 56.12804
Высота треугольника опущенная с вершины A на сторону BC со сторонами 68, 67 и 63 равна 55.3026276
Высота треугольника опущенная с вершины C на сторону AB со сторонами 68, 67 и 63 равна 59.6917251
Ссылка на результат
?n1=68&n2=67&n3=63
Найти высоту треугольника со сторонами 63, 41 и 34
Найти высоту треугольника со сторонами 137, 101 и 88
Найти высоту треугольника со сторонами 136, 115 и 108
Найти высоту треугольника со сторонами 113, 105 и 39
Найти высоту треугольника со сторонами 99, 55 и 53
Найти высоту треугольника со сторонами 144, 129 и 54
Найти высоту треугольника со сторонами 137, 101 и 88
Найти высоту треугольника со сторонами 136, 115 и 108
Найти высоту треугольника со сторонами 113, 105 и 39
Найти высоту треугольника со сторонами 99, 55 и 53
Найти высоту треугольника со сторонами 144, 129 и 54