Рассчитать высоту треугольника со сторонами 69, 53 и 40
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{69 + 53 + 40}{2}} \normalsize = 81}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{81(81-69)(81-53)(81-40)}}{53}\normalsize = 39.861919}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{81(81-69)(81-53)(81-40)}}{69}\normalsize = 30.6185755}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{81(81-69)(81-53)(81-40)}}{40}\normalsize = 52.8170427}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 69, 53 и 40 равна 39.861919
Высота треугольника опущенная с вершины A на сторону BC со сторонами 69, 53 и 40 равна 30.6185755
Высота треугольника опущенная с вершины C на сторону AB со сторонами 69, 53 и 40 равна 52.8170427
Ссылка на результат
?n1=69&n2=53&n3=40
Найти высоту треугольника со сторонами 101, 94 и 19
Найти высоту треугольника со сторонами 124, 121 и 28
Найти высоту треугольника со сторонами 123, 82 и 75
Найти высоту треугольника со сторонами 98, 88 и 68
Найти высоту треугольника со сторонами 29, 20 и 11
Найти высоту треугольника со сторонами 91, 66 и 34
Найти высоту треугольника со сторонами 124, 121 и 28
Найти высоту треугольника со сторонами 123, 82 и 75
Найти высоту треугольника со сторонами 98, 88 и 68
Найти высоту треугольника со сторонами 29, 20 и 11
Найти высоту треугольника со сторонами 91, 66 и 34