Рассчитать высоту треугольника со сторонами 69, 63 и 33
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{69 + 63 + 33}{2}} \normalsize = 82.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{82.5(82.5-69)(82.5-63)(82.5-33)}}{63}\normalsize = 32.9157087}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{82.5(82.5-69)(82.5-63)(82.5-33)}}{69}\normalsize = 30.0534731}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{82.5(82.5-69)(82.5-63)(82.5-33)}}{33}\normalsize = 62.8390802}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 69, 63 и 33 равна 32.9157087
Высота треугольника опущенная с вершины A на сторону BC со сторонами 69, 63 и 33 равна 30.0534731
Высота треугольника опущенная с вершины C на сторону AB со сторонами 69, 63 и 33 равна 62.8390802
Ссылка на результат
?n1=69&n2=63&n3=33
Найти высоту треугольника со сторонами 104, 91 и 32
Найти высоту треугольника со сторонами 68, 39 и 31
Найти высоту треугольника со сторонами 102, 102 и 54
Найти высоту треугольника со сторонами 67, 63 и 56
Найти высоту треугольника со сторонами 145, 141 и 120
Найти высоту треугольника со сторонами 128, 97 и 62
Найти высоту треугольника со сторонами 68, 39 и 31
Найти высоту треугольника со сторонами 102, 102 и 54
Найти высоту треугольника со сторонами 67, 63 и 56
Найти высоту треугольника со сторонами 145, 141 и 120
Найти высоту треугольника со сторонами 128, 97 и 62