Рассчитать высоту треугольника со сторонами 69, 67 и 51
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{69 + 67 + 51}{2}} \normalsize = 93.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{93.5(93.5-69)(93.5-67)(93.5-51)}}{67}\normalsize = 47.9470004}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{93.5(93.5-69)(93.5-67)(93.5-51)}}{69}\normalsize = 46.5572323}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{93.5(93.5-69)(93.5-67)(93.5-51)}}{51}\normalsize = 62.9891966}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 69, 67 и 51 равна 47.9470004
Высота треугольника опущенная с вершины A на сторону BC со сторонами 69, 67 и 51 равна 46.5572323
Высота треугольника опущенная с вершины C на сторону AB со сторонами 69, 67 и 51 равна 62.9891966
Ссылка на результат
?n1=69&n2=67&n3=51
Найти высоту треугольника со сторонами 99, 64 и 64
Найти высоту треугольника со сторонами 99, 99 и 27
Найти высоту треугольника со сторонами 148, 137 и 106
Найти высоту треугольника со сторонами 123, 93 и 35
Найти высоту треугольника со сторонами 77, 73 и 43
Найти высоту треугольника со сторонами 113, 101 и 88
Найти высоту треугольника со сторонами 99, 99 и 27
Найти высоту треугольника со сторонами 148, 137 и 106
Найти высоту треугольника со сторонами 123, 93 и 35
Найти высоту треугольника со сторонами 77, 73 и 43
Найти высоту треугольника со сторонами 113, 101 и 88