Рассчитать высоту треугольника со сторонами 70, 44 и 33
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{70 + 44 + 33}{2}} \normalsize = 73.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{73.5(73.5-70)(73.5-44)(73.5-33)}}{44}\normalsize = 25.1995932}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{73.5(73.5-70)(73.5-44)(73.5-33)}}{70}\normalsize = 15.8397443}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{73.5(73.5-70)(73.5-44)(73.5-33)}}{33}\normalsize = 33.5994576}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 70, 44 и 33 равна 25.1995932
Высота треугольника опущенная с вершины A на сторону BC со сторонами 70, 44 и 33 равна 15.8397443
Высота треугольника опущенная с вершины C на сторону AB со сторонами 70, 44 и 33 равна 33.5994576
Ссылка на результат
?n1=70&n2=44&n3=33
Найти высоту треугольника со сторонами 123, 122 и 85
Найти высоту треугольника со сторонами 97, 73 и 40
Найти высоту треугольника со сторонами 102, 88 и 57
Найти высоту треугольника со сторонами 102, 74 и 62
Найти высоту треугольника со сторонами 143, 122 и 95
Найти высоту треугольника со сторонами 132, 91 и 78
Найти высоту треугольника со сторонами 97, 73 и 40
Найти высоту треугольника со сторонами 102, 88 и 57
Найти высоту треугольника со сторонами 102, 74 и 62
Найти высоту треугольника со сторонами 143, 122 и 95
Найти высоту треугольника со сторонами 132, 91 и 78