Рассчитать высоту треугольника со сторонами 70, 57 и 41
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{70 + 57 + 41}{2}} \normalsize = 84}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{84(84-70)(84-57)(84-41)}}{57}\normalsize = 40.9991555}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{84(84-70)(84-57)(84-41)}}{70}\normalsize = 33.3850266}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{84(84-70)(84-57)(84-41)}}{41}\normalsize = 56.9988259}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 70, 57 и 41 равна 40.9991555
Высота треугольника опущенная с вершины A на сторону BC со сторонами 70, 57 и 41 равна 33.3850266
Высота треугольника опущенная с вершины C на сторону AB со сторонами 70, 57 и 41 равна 56.9988259
Ссылка на результат
?n1=70&n2=57&n3=41
Найти высоту треугольника со сторонами 66, 46 и 30
Найти высоту треугольника со сторонами 142, 72 и 72
Найти высоту треугольника со сторонами 136, 133 и 31
Найти высоту треугольника со сторонами 143, 132 и 43
Найти высоту треугольника со сторонами 105, 78 и 40
Найти высоту треугольника со сторонами 86, 82 и 63
Найти высоту треугольника со сторонами 142, 72 и 72
Найти высоту треугольника со сторонами 136, 133 и 31
Найти высоту треугольника со сторонами 143, 132 и 43
Найти высоту треугольника со сторонами 105, 78 и 40
Найти высоту треугольника со сторонами 86, 82 и 63