Рассчитать высоту треугольника со сторонами 70, 58 и 50
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{70 + 58 + 50}{2}} \normalsize = 89}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{89(89-70)(89-58)(89-50)}}{58}\normalsize = 49.3045451}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{89(89-70)(89-58)(89-50)}}{70}\normalsize = 40.8523374}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{89(89-70)(89-58)(89-50)}}{50}\normalsize = 57.1932723}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 70, 58 и 50 равна 49.3045451
Высота треугольника опущенная с вершины A на сторону BC со сторонами 70, 58 и 50 равна 40.8523374
Высота треугольника опущенная с вершины C на сторону AB со сторонами 70, 58 и 50 равна 57.1932723
Ссылка на результат
?n1=70&n2=58&n3=50
Найти высоту треугольника со сторонами 146, 135 и 115
Найти высоту треугольника со сторонами 44, 44 и 30
Найти высоту треугольника со сторонами 60, 55 и 47
Найти высоту треугольника со сторонами 108, 74 и 72
Найти высоту треугольника со сторонами 71, 64 и 26
Найти высоту треугольника со сторонами 94, 87 и 11
Найти высоту треугольника со сторонами 44, 44 и 30
Найти высоту треугольника со сторонами 60, 55 и 47
Найти высоту треугольника со сторонами 108, 74 и 72
Найти высоту треугольника со сторонами 71, 64 и 26
Найти высоту треугольника со сторонами 94, 87 и 11