Рассчитать высоту треугольника со сторонами 70, 62 и 14
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{70 + 62 + 14}{2}} \normalsize = 73}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{73(73-70)(73-62)(73-14)}}{62}\normalsize = 12.1613759}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{73(73-70)(73-62)(73-14)}}{70}\normalsize = 10.7715044}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{73(73-70)(73-62)(73-14)}}{14}\normalsize = 53.8575218}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 70, 62 и 14 равна 12.1613759
Высота треугольника опущенная с вершины A на сторону BC со сторонами 70, 62 и 14 равна 10.7715044
Высота треугольника опущенная с вершины C на сторону AB со сторонами 70, 62 и 14 равна 53.8575218
Ссылка на результат
?n1=70&n2=62&n3=14
Найти высоту треугольника со сторонами 103, 97 и 25
Найти высоту треугольника со сторонами 99, 94 и 52
Найти высоту треугольника со сторонами 119, 113 и 54
Найти высоту треугольника со сторонами 134, 99 и 51
Найти высоту треугольника со сторонами 116, 115 и 76
Найти высоту треугольника со сторонами 130, 116 и 21
Найти высоту треугольника со сторонами 99, 94 и 52
Найти высоту треугольника со сторонами 119, 113 и 54
Найти высоту треугольника со сторонами 134, 99 и 51
Найти высоту треугольника со сторонами 116, 115 и 76
Найти высоту треугольника со сторонами 130, 116 и 21