Рассчитать высоту треугольника со сторонами 70, 67 и 47
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{70 + 67 + 47}{2}} \normalsize = 92}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{92(92-70)(92-67)(92-47)}}{67}\normalsize = 45.0439749}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{92(92-70)(92-67)(92-47)}}{70}\normalsize = 43.1135189}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{92(92-70)(92-67)(92-47)}}{47}\normalsize = 64.2116239}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 70, 67 и 47 равна 45.0439749
Высота треугольника опущенная с вершины A на сторону BC со сторонами 70, 67 и 47 равна 43.1135189
Высота треугольника опущенная с вершины C на сторону AB со сторонами 70, 67 и 47 равна 64.2116239
Ссылка на результат
?n1=70&n2=67&n3=47
Найти высоту треугольника со сторонами 127, 114 и 29
Найти высоту треугольника со сторонами 118, 113 и 35
Найти высоту треугольника со сторонами 112, 71 и 59
Найти высоту треугольника со сторонами 79, 66 и 60
Найти высоту треугольника со сторонами 115, 90 и 35
Найти высоту треугольника со сторонами 132, 125 и 11
Найти высоту треугольника со сторонами 118, 113 и 35
Найти высоту треугольника со сторонами 112, 71 и 59
Найти высоту треугольника со сторонами 79, 66 и 60
Найти высоту треугольника со сторонами 115, 90 и 35
Найти высоту треугольника со сторонами 132, 125 и 11