Рассчитать высоту треугольника со сторонами 71, 51 и 32
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{71 + 51 + 32}{2}} \normalsize = 77}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{77(77-71)(77-51)(77-32)}}{51}\normalsize = 28.8319315}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{77(77-71)(77-51)(77-32)}}{71}\normalsize = 20.7102607}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{77(77-71)(77-51)(77-32)}}{32}\normalsize = 45.9508909}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 71, 51 и 32 равна 28.8319315
Высота треугольника опущенная с вершины A на сторону BC со сторонами 71, 51 и 32 равна 20.7102607
Высота треугольника опущенная с вершины C на сторону AB со сторонами 71, 51 и 32 равна 45.9508909
Ссылка на результат
?n1=71&n2=51&n3=32
Найти высоту треугольника со сторонами 99, 56 и 55
Найти высоту треугольника со сторонами 135, 117 и 73
Найти высоту треугольника со сторонами 150, 144 и 142
Найти высоту треугольника со сторонами 95, 69 и 60
Найти высоту треугольника со сторонами 96, 73 и 29
Найти высоту треугольника со сторонами 101, 69 и 42
Найти высоту треугольника со сторонами 135, 117 и 73
Найти высоту треугольника со сторонами 150, 144 и 142
Найти высоту треугольника со сторонами 95, 69 и 60
Найти высоту треугольника со сторонами 96, 73 и 29
Найти высоту треугольника со сторонами 101, 69 и 42