Рассчитать высоту треугольника со сторонами 71, 62 и 15
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{71 + 62 + 15}{2}} \normalsize = 74}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{74(74-71)(74-62)(74-15)}}{62}\normalsize = 12.7888479}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{74(74-71)(74-62)(74-15)}}{71}\normalsize = 11.1677263}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{74(74-71)(74-62)(74-15)}}{15}\normalsize = 52.8605713}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 71, 62 и 15 равна 12.7888479
Высота треугольника опущенная с вершины A на сторону BC со сторонами 71, 62 и 15 равна 11.1677263
Высота треугольника опущенная с вершины C на сторону AB со сторонами 71, 62 и 15 равна 52.8605713
Ссылка на результат
?n1=71&n2=62&n3=15
Найти высоту треугольника со сторонами 130, 97 и 51
Найти высоту треугольника со сторонами 72, 56 и 35
Найти высоту треугольника со сторонами 90, 58 и 33
Найти высоту треугольника со сторонами 115, 89 и 44
Найти высоту треугольника со сторонами 122, 115 и 42
Найти высоту треугольника со сторонами 81, 71 и 12
Найти высоту треугольника со сторонами 72, 56 и 35
Найти высоту треугольника со сторонами 90, 58 и 33
Найти высоту треугольника со сторонами 115, 89 и 44
Найти высоту треугольника со сторонами 122, 115 и 42
Найти высоту треугольника со сторонами 81, 71 и 12