Рассчитать высоту треугольника со сторонами 71, 64 и 56
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{71 + 64 + 56}{2}} \normalsize = 95.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{95.5(95.5-71)(95.5-64)(95.5-56)}}{64}\normalsize = 53.3198077}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{95.5(95.5-71)(95.5-64)(95.5-56)}}{71}\normalsize = 48.0629252}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{95.5(95.5-71)(95.5-64)(95.5-56)}}{56}\normalsize = 60.9369231}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 71, 64 и 56 равна 53.3198077
Высота треугольника опущенная с вершины A на сторону BC со сторонами 71, 64 и 56 равна 48.0629252
Высота треугольника опущенная с вершины C на сторону AB со сторонами 71, 64 и 56 равна 60.9369231
Ссылка на результат
?n1=71&n2=64&n3=56
Найти высоту треугольника со сторонами 111, 83 и 49
Найти высоту треугольника со сторонами 106, 98 и 33
Найти высоту треугольника со сторонами 94, 84 и 82
Найти высоту треугольника со сторонами 109, 99 и 72
Найти высоту треугольника со сторонами 141, 132 и 33
Найти высоту треугольника со сторонами 145, 124 и 78
Найти высоту треугольника со сторонами 106, 98 и 33
Найти высоту треугольника со сторонами 94, 84 и 82
Найти высоту треугольника со сторонами 109, 99 и 72
Найти высоту треугольника со сторонами 141, 132 и 33
Найти высоту треугольника со сторонами 145, 124 и 78