Рассчитать высоту треугольника со сторонами 71, 64 и 9
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{71 + 64 + 9}{2}} \normalsize = 72}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{72(72-71)(72-64)(72-9)}}{64}\normalsize = 5.95294045}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{72(72-71)(72-64)(72-9)}}{71}\normalsize = 5.36603083}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{72(72-71)(72-64)(72-9)}}{9}\normalsize = 42.332021}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 71, 64 и 9 равна 5.95294045
Высота треугольника опущенная с вершины A на сторону BC со сторонами 71, 64 и 9 равна 5.36603083
Высота треугольника опущенная с вершины C на сторону AB со сторонами 71, 64 и 9 равна 42.332021
Ссылка на результат
?n1=71&n2=64&n3=9
Найти высоту треугольника со сторонами 106, 77 и 49
Найти высоту треугольника со сторонами 130, 112 и 108
Найти высоту треугольника со сторонами 136, 95 и 95
Найти высоту треугольника со сторонами 140, 117 и 94
Найти высоту треугольника со сторонами 139, 115 и 53
Найти высоту треугольника со сторонами 135, 123 и 29
Найти высоту треугольника со сторонами 130, 112 и 108
Найти высоту треугольника со сторонами 136, 95 и 95
Найти высоту треугольника со сторонами 140, 117 и 94
Найти высоту треугольника со сторонами 139, 115 и 53
Найти высоту треугольника со сторонами 135, 123 и 29