Рассчитать высоту треугольника со сторонами 71, 68 и 64
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{71 + 68 + 64}{2}} \normalsize = 101.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{101.5(101.5-71)(101.5-68)(101.5-64)}}{68}\normalsize = 58.0018788}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{101.5(101.5-71)(101.5-68)(101.5-64)}}{71}\normalsize = 55.5510951}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{101.5(101.5-71)(101.5-68)(101.5-64)}}{64}\normalsize = 61.6269962}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 71, 68 и 64 равна 58.0018788
Высота треугольника опущенная с вершины A на сторону BC со сторонами 71, 68 и 64 равна 55.5510951
Высота треугольника опущенная с вершины C на сторону AB со сторонами 71, 68 и 64 равна 61.6269962
Ссылка на результат
?n1=71&n2=68&n3=64
Найти высоту треугольника со сторонами 99, 96 и 56
Найти высоту треугольника со сторонами 141, 131 и 50
Найти высоту треугольника со сторонами 119, 113 и 38
Найти высоту треугольника со сторонами 124, 122 и 121
Найти высоту треугольника со сторонами 56, 52 и 35
Найти высоту треугольника со сторонами 118, 82 и 58
Найти высоту треугольника со сторонами 141, 131 и 50
Найти высоту треугольника со сторонами 119, 113 и 38
Найти высоту треугольника со сторонами 124, 122 и 121
Найти высоту треугольника со сторонами 56, 52 и 35
Найти высоту треугольника со сторонами 118, 82 и 58