Рассчитать высоту треугольника со сторонами 72, 66 и 30
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{72 + 66 + 30}{2}} \normalsize = 84}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{84(84-72)(84-66)(84-30)}}{66}\normalsize = 29.9950409}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{84(84-72)(84-66)(84-30)}}{72}\normalsize = 27.4954542}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{84(84-72)(84-66)(84-30)}}{30}\normalsize = 65.98909}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 72, 66 и 30 равна 29.9950409
Высота треугольника опущенная с вершины A на сторону BC со сторонами 72, 66 и 30 равна 27.4954542
Высота треугольника опущенная с вершины C на сторону AB со сторонами 72, 66 и 30 равна 65.98909
Ссылка на результат
?n1=72&n2=66&n3=30
Найти высоту треугольника со сторонами 36, 33 и 16
Найти высоту треугольника со сторонами 102, 97 и 11
Найти высоту треугольника со сторонами 77, 61 и 61
Найти высоту треугольника со сторонами 77, 55 и 48
Найти высоту треугольника со сторонами 139, 102 и 102
Найти высоту треугольника со сторонами 116, 89 и 73
Найти высоту треугольника со сторонами 102, 97 и 11
Найти высоту треугольника со сторонами 77, 61 и 61
Найти высоту треугольника со сторонами 77, 55 и 48
Найти высоту треугольника со сторонами 139, 102 и 102
Найти высоту треугольника со сторонами 116, 89 и 73