Рассчитать высоту треугольника со сторонами 72, 67 и 13
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{72 + 67 + 13}{2}} \normalsize = 76}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{76(76-72)(76-67)(76-13)}}{67}\normalsize = 12.3932016}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{76(76-72)(76-67)(76-13)}}{72}\normalsize = 11.5325626}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{76(76-72)(76-67)(76-13)}}{13}\normalsize = 63.8726544}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 72, 67 и 13 равна 12.3932016
Высота треугольника опущенная с вершины A на сторону BC со сторонами 72, 67 и 13 равна 11.5325626
Высота треугольника опущенная с вершины C на сторону AB со сторонами 72, 67 и 13 равна 63.8726544
Ссылка на результат
?n1=72&n2=67&n3=13
Найти высоту треугольника со сторонами 130, 121 и 46
Найти высоту треугольника со сторонами 115, 87 и 81
Найти высоту треугольника со сторонами 99, 63 и 41
Найти высоту треугольника со сторонами 143, 140 и 136
Найти высоту треугольника со сторонами 111, 111 и 48
Найти высоту треугольника со сторонами 31, 27 и 7
Найти высоту треугольника со сторонами 115, 87 и 81
Найти высоту треугольника со сторонами 99, 63 и 41
Найти высоту треугольника со сторонами 143, 140 и 136
Найти высоту треугольника со сторонами 111, 111 и 48
Найти высоту треугольника со сторонами 31, 27 и 7