Рассчитать высоту треугольника со сторонами 72, 71 и 69
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{72 + 71 + 69}{2}} \normalsize = 106}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{106(106-72)(106-71)(106-69)}}{71}\normalsize = 60.8553721}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{106(106-72)(106-71)(106-69)}}{72}\normalsize = 60.0101586}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{106(106-72)(106-71)(106-69)}}{69}\normalsize = 62.6192959}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 72, 71 и 69 равна 60.8553721
Высота треугольника опущенная с вершины A на сторону BC со сторонами 72, 71 и 69 равна 60.0101586
Высота треугольника опущенная с вершины C на сторону AB со сторонами 72, 71 и 69 равна 62.6192959
Ссылка на результат
?n1=72&n2=71&n3=69
Найти высоту треугольника со сторонами 98, 93 и 54
Найти высоту треугольника со сторонами 111, 97 и 72
Найти высоту треугольника со сторонами 122, 113 и 16
Найти высоту треугольника со сторонами 150, 134 и 58
Найти высоту треугольника со сторонами 77, 74 и 23
Найти высоту треугольника со сторонами 91, 85 и 79
Найти высоту треугольника со сторонами 111, 97 и 72
Найти высоту треугольника со сторонами 122, 113 и 16
Найти высоту треугольника со сторонами 150, 134 и 58
Найти высоту треугольника со сторонами 77, 74 и 23
Найти высоту треугольника со сторонами 91, 85 и 79