Рассчитать высоту треугольника со сторонами 73, 40 и 35
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{73 + 40 + 35}{2}} \normalsize = 74}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{74(74-73)(74-40)(74-35)}}{40}\normalsize = 15.6623753}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{74(74-73)(74-40)(74-35)}}{73}\normalsize = 8.58212345}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{74(74-73)(74-40)(74-35)}}{35}\normalsize = 17.8998575}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 73, 40 и 35 равна 15.6623753
Высота треугольника опущенная с вершины A на сторону BC со сторонами 73, 40 и 35 равна 8.58212345
Высота треугольника опущенная с вершины C на сторону AB со сторонами 73, 40 и 35 равна 17.8998575
Ссылка на результат
?n1=73&n2=40&n3=35
Найти высоту треугольника со сторонами 114, 102 и 82
Найти высоту треугольника со сторонами 116, 103 и 24
Найти высоту треугольника со сторонами 18, 14 и 8
Найти высоту треугольника со сторонами 66, 48 и 33
Найти высоту треугольника со сторонами 150, 141 и 82
Найти высоту треугольника со сторонами 124, 106 и 57
Найти высоту треугольника со сторонами 116, 103 и 24
Найти высоту треугольника со сторонами 18, 14 и 8
Найти высоту треугольника со сторонами 66, 48 и 33
Найти высоту треугольника со сторонами 150, 141 и 82
Найти высоту треугольника со сторонами 124, 106 и 57