Рассчитать высоту треугольника со сторонами 73, 52 и 26
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{73 + 52 + 26}{2}} \normalsize = 75.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{75.5(75.5-73)(75.5-52)(75.5-26)}}{52}\normalsize = 18.0221526}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{75.5(75.5-73)(75.5-52)(75.5-26)}}{73}\normalsize = 12.8376977}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{75.5(75.5-73)(75.5-52)(75.5-26)}}{26}\normalsize = 36.0443052}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 73, 52 и 26 равна 18.0221526
Высота треугольника опущенная с вершины A на сторону BC со сторонами 73, 52 и 26 равна 12.8376977
Высота треугольника опущенная с вершины C на сторону AB со сторонами 73, 52 и 26 равна 36.0443052
Ссылка на результат
?n1=73&n2=52&n3=26
Найти высоту треугольника со сторонами 144, 123 и 77
Найти высоту треугольника со сторонами 74, 60 и 30
Найти высоту треугольника со сторонами 144, 138 и 13
Найти высоту треугольника со сторонами 69, 64 и 44
Найти высоту треугольника со сторонами 149, 128 и 67
Найти высоту треугольника со сторонами 131, 110 и 24
Найти высоту треугольника со сторонами 74, 60 и 30
Найти высоту треугольника со сторонами 144, 138 и 13
Найти высоту треугольника со сторонами 69, 64 и 44
Найти высоту треугольника со сторонами 149, 128 и 67
Найти высоту треугольника со сторонами 131, 110 и 24