Рассчитать высоту треугольника со сторонами 73, 66 и 19
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{73 + 66 + 19}{2}} \normalsize = 79}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{79(79-73)(79-66)(79-19)}}{66}\normalsize = 18.4256379}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{79(79-73)(79-66)(79-19)}}{73}\normalsize = 16.6587959}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{79(79-73)(79-66)(79-19)}}{19}\normalsize = 64.0048475}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 73, 66 и 19 равна 18.4256379
Высота треугольника опущенная с вершины A на сторону BC со сторонами 73, 66 и 19 равна 16.6587959
Высота треугольника опущенная с вершины C на сторону AB со сторонами 73, 66 и 19 равна 64.0048475
Ссылка на результат
?n1=73&n2=66&n3=19
Найти высоту треугольника со сторонами 127, 106 и 83
Найти высоту треугольника со сторонами 111, 109 и 19
Найти высоту треугольника со сторонами 34, 22 и 14
Найти высоту треугольника со сторонами 122, 75 и 63
Найти высоту треугольника со сторонами 73, 56 и 36
Найти высоту треугольника со сторонами 86, 71 и 28
Найти высоту треугольника со сторонами 111, 109 и 19
Найти высоту треугольника со сторонами 34, 22 и 14
Найти высоту треугольника со сторонами 122, 75 и 63
Найти высоту треугольника со сторонами 73, 56 и 36
Найти высоту треугольника со сторонами 86, 71 и 28